

Continuiti: A Generalized Framework for Neural Operators

github.com/aai-institute/continuiti

WHY NEURAL OPERATORS

Direct Mapping Between Function Spaces

- Enhanced Flexibility: Neural operators map inputs to outputs as functions, offering a flexible framework ideal for problems expressed naturally as functions.
- Reduced Complexity: Avoids the need to discretize function spaces, simplifying model formulation and reducing computational complexity.
- Increased Accuracy: Directly handling functions improves generalization and accuracy.

Discretization Independent

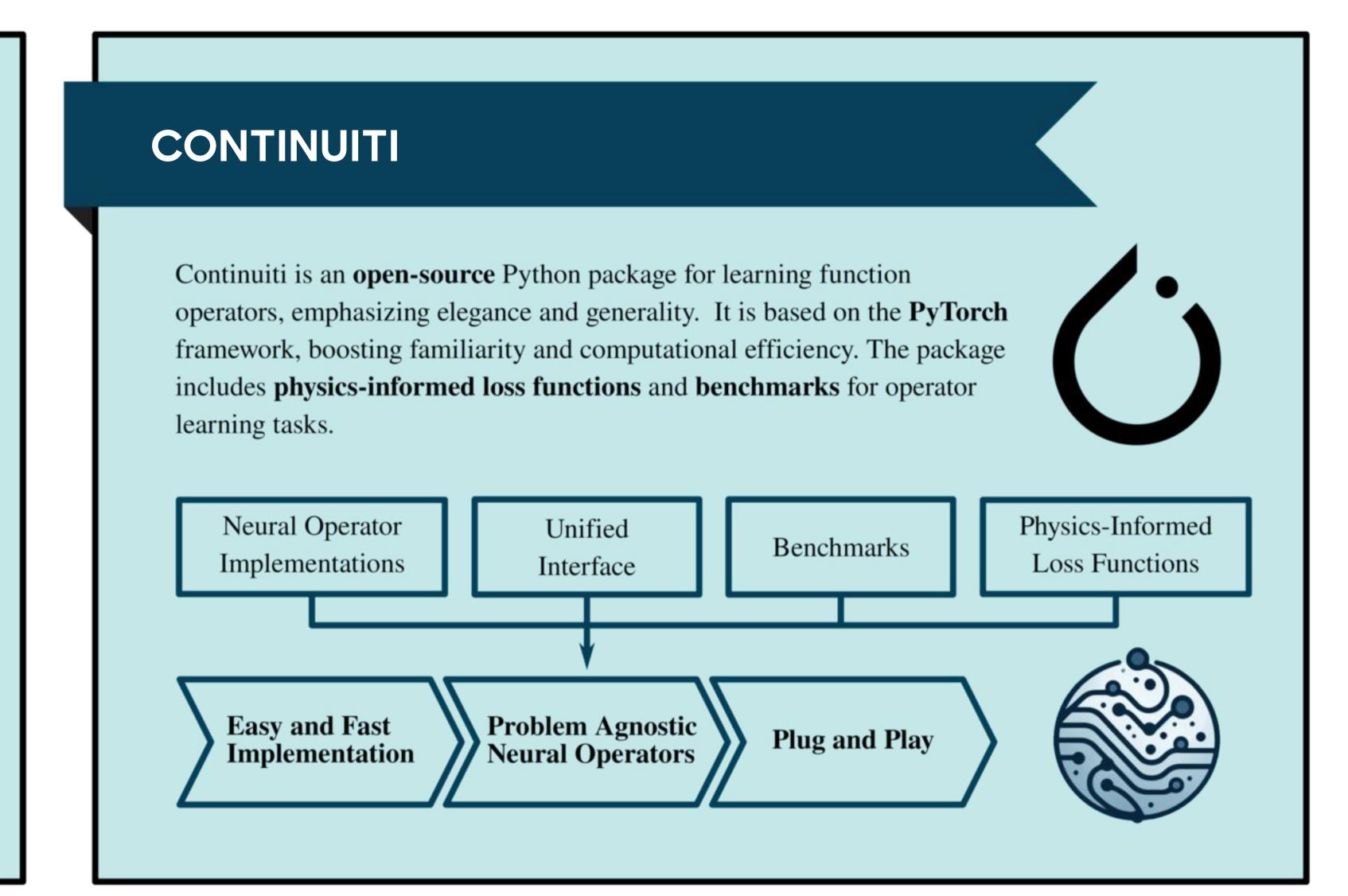
- The discretization of input and output functions can differ between samples.
- Neural operators can evaluate outputs at arbitrarily many points, in any location.

Physics Informed

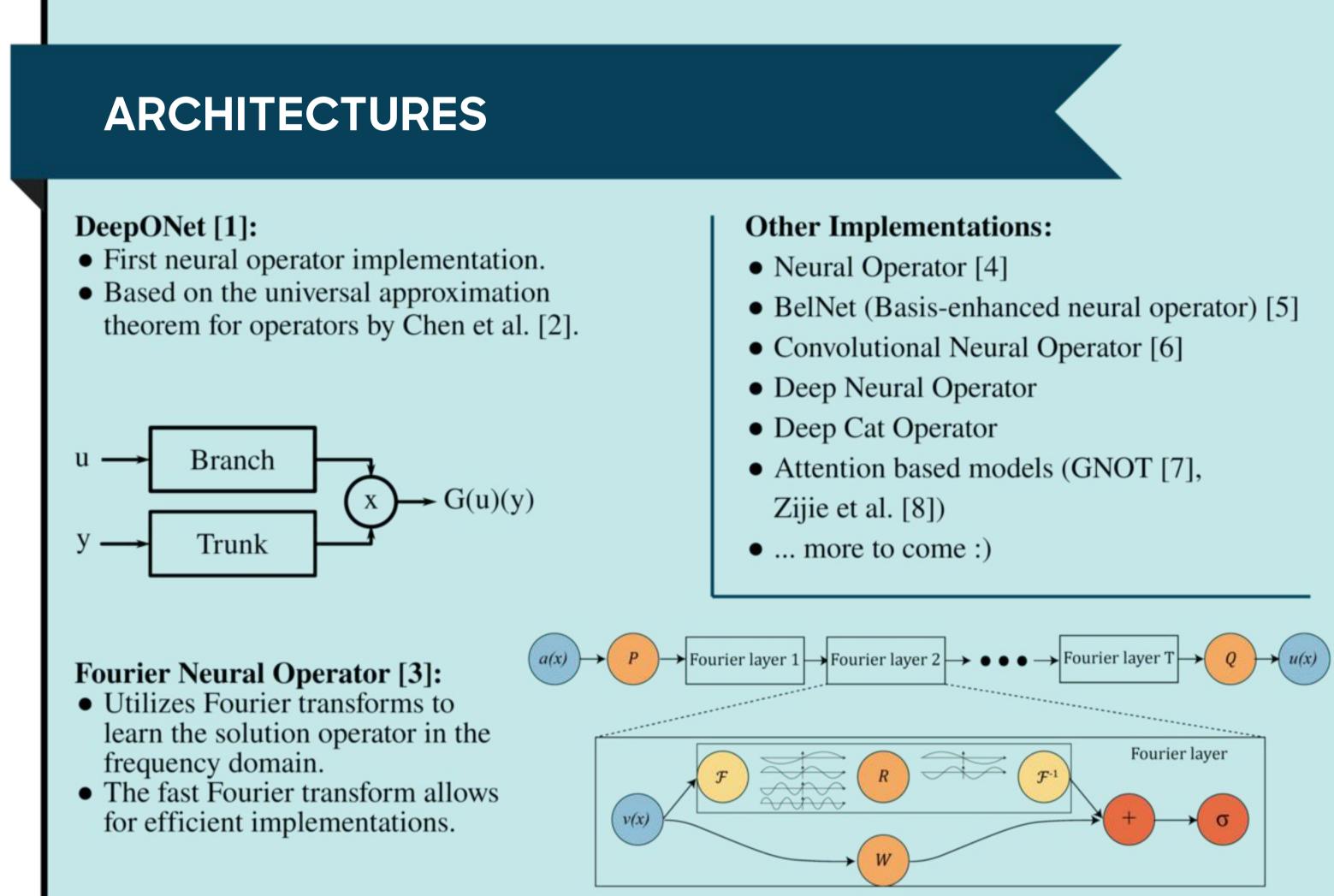
- Seamless integration of physical constraints.
- Partial differential equations are naturally expressed using functions.

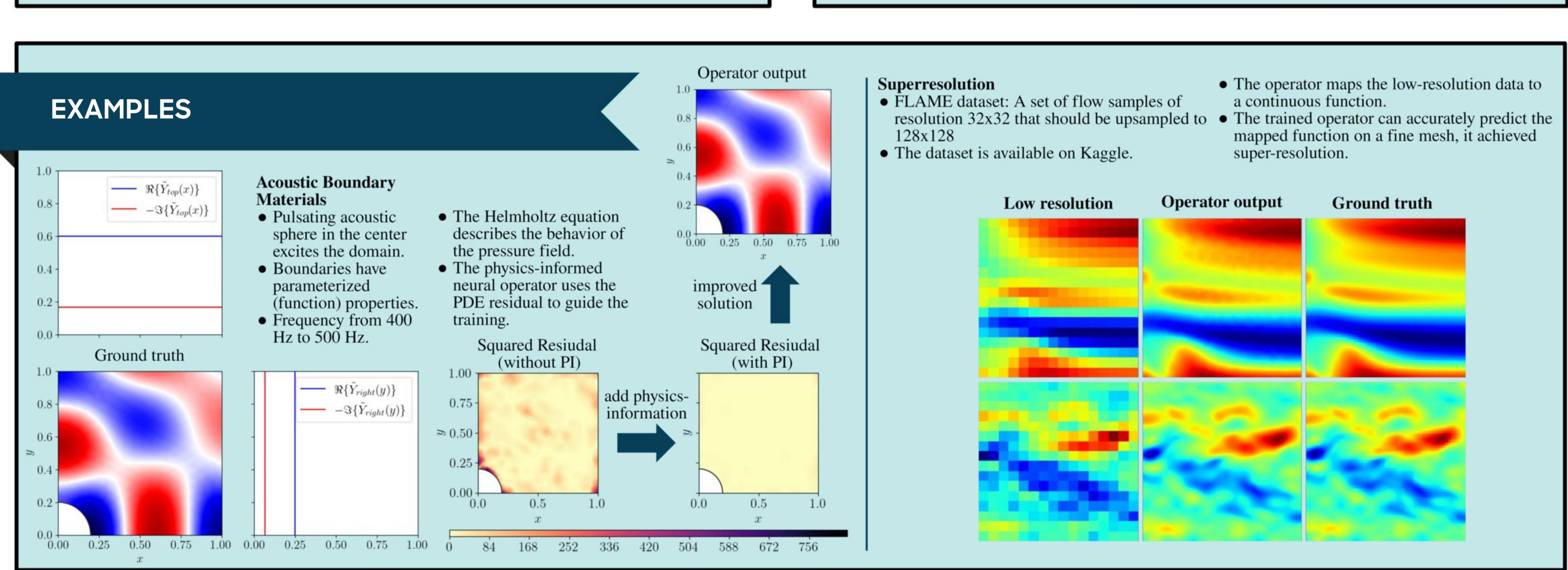
Wide Range of Applications

- Offers high flexibility and faster (even realtime) solutions.
- Provides robust performance across varied problems and datasets.
- Scalable: Effectively handles high-
- dimensional data and complex functions. • Applicable in fields such as fluid dynamics, acoustics, structural mechanics, heat transfer, tomography, plasma physics, material design, seismology, optical systems, and many more.



PROBLEM DESCRIPTION Neural operators are designed to learn $\mathcal{A}: X \rightarrow U$ mappings between infinite-dimensional function spaces rather than finitedimensional vector-spaces. **Function** $U: y \rightarrow v$ This approach allows to efficiently Space(s) approximate solutions to partial differential equations and other functional problems. • The resulting output function can be evaluated at arbitrarily many points, providing a flexible and powerful solution to the problem. Vector Space(s) In Continuiti: • The operator mapping is defined with: >>> dno = DeepNeuralOperator() • The problem is described by the mapping: >>> v = dno(x, u, y) $G: \mathcal{A} \rightarrow \mathcal{U}$ • Neural operator implementations can be swapped out seamlessly. • The neural operator approximates the mapping: Straightforward workflow through generalized datasets. $G \approx G_{\theta}$





- [1] Lu, Lu, et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators." Nature machine intelligence 3.3 (2021): 218-229.
- [2] Chen, Tianping, and Hong Chen. "Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems." IEEE transactions on neural networks 6.4 (1995): 911-917.
- [3] Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).
- [4] Kovachki, Nikola, et al. "Neural operator: Learning maps between function spaces with applications to pdes." Journal of Machine Learning Research 24.89 (2023): 1-97.
- [5] Zhang, Zecheng, Wing Tat Leung, and Hayden Schaeffer. "BelNet: Basis enhanced learning, a mesh-free neural operator." arXiv preprint arXiv:2212.07336 (2022).

[8] Li, Zijie, Kazem Meidani, and Amir Barati Farimani. "Transformer for partial differential equations' operator learning." arXiv preprint arXiv:2205.13671 (2022).

- [6] Raonic, Bogdan, et al. "Convolutional neural operators." ICLR 2023 Workshop on Physics for Machine Learning. 2023.
- [7] Hao, Zhongkai, et al. "Gnot: A general neural operator transformer for operator learning." International Conference on Machine Learning. PMLR, 2023.