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Continuous Normalizing Flows

Continuous-time Flows (CNFs) transform a simple base distribution p0 = pB, usually a standard

normal distribution, into a complex data distribution pD. For each point in time t ∈ [0, 1] the time-
dependent vector field defines a distribution (probability path) and the goal is to find a vector field

fθ such that p1 = pD.

A CNF is constructed by parameterizing the time derivative of xt by a parametric function fθ, s.t.:

dxt

dt
= fθ(t, xt). (1)

Unlike “discrete” flows, continuous flows do not require limiting structural assumptions to yield

a diffeomorphism [6]. To compute the forward and backward transformations, the system is

integrated in time:

φt1(x0) = xt1 = x0 +
∫ t1

t=t0
fθ(t, xt)dt (2)

φt0(x1) = xt0 = x1 −
∫ t1

t=t0
fθ(t, xt)dt (3)

The above shows that CNFs have the same computational complexity in each direction, compared

to their counterpart constructed from discrete transformations.

While CNFs are very flexible, they are also computationally expensive to train naivelywith max-

imum likelihood since the flow has to be integrated over time for each sample. This is espe-

cially problematic for large datasets which are needed for the precise estimation of complex high-

dimensional distributions.

CNFs via FlowMatching

Lipman et al. [4] train a CNF by regressing fθ directly from an implicit definition of the target

vector field that defines pt(x) where p0 = pB and p1 = pD. They do so by defining a conditional

vector field w.r.t. single samples from the data set.

If the target vector field ut would be known, it can be regressed directly via

LFM(θ) = Et,pt(x)‖fθ(t, x) − ut(x)‖2 (4)

Lipman et al. [4] show that one can define appropriate conditional target vector fields when con-

ditioning on the outcome x1:

pt(x) =
∫

pt(x | x1)pD(x1)dx1. (5)

One possibility for pt(x | x1) is a Gaussian probability path, leading to a specific form of φt(x | x1):
pt(x | x1) = N (x; µt(x1), σt(x1)2I) (6)

φt(x | x1) = σt(x1)x + µt(x1) (7)

with µ0(x1) = 0, σ0(x1) = 1 and µ1(x1) = x1, σ1(x1) = σmin.

The authors show that the conditional flow matching loss obtains equivalent gradients as the

flow matching loss eq. (4) w.r.t. the vector field ut(x).

LCFM(θ) = Et,pt(x|x1),pD(x1)‖fθ(t, x) − ut(x | x1)‖2 (8)

Neural Posterior Estimation

Bayesian inference is often not applicable to simulation-based models due to the intractable like-

lihood of the simulator. Simulation-Based Inference [2] (SBI) and especially Neural Posterior Infer-

ence [7] (NPE) mitigate this issue by learning the posterior directly using conditional Normalizing

Flows.

Given a simulatorM(θ) = x, where θ ∼ π(θ).

1. Generate {(θ, x)i}N
i=1, where (θ, x)i ∼ p(θ, x) = p(x | θ)π(θ) by

1. θ ∼ π(θ)
2. x ∼ p(x | θ) by evaluating x = M(θ)

2. Train a cond. NF qω(θ | x) ≈ p(θ | x) minimizing the negative log-likelihood

arg min
ω∈RM

1
N

N∑
i=1

− log qω(θi | xi) (9)

3. Obtain an amortized estimator by conditioning on an observation xo: qω(θ | x = xo).

RunningM is usually expensive and mappingM : θ 7→ x is highly non-linear. Therefore, N tends

to be small.

Figure 1. Schematic illustration of fitting a neural posterior estimator using samples from the joint distribution.

Figure taken from [1].

FlowMatching Posterior Esitmation

In SBI, sample efficiency, scalability, and expressivity of the density model are important. Flow

matching improves on such aspects due to the efficient transport between source and target

density and the higher flexibility of applicable transformations allowed by continuous normalizing

flows.

NPE NPSE FMPE

Tractable posterior density Check Check
Flexible network architecture Check Check
Network passes for sampling single many many

Table 1. Information taken from [3].

Dax et al. [3] propose flowmatching posterior estimation (FMPE) by adapting the flowmatching

loss, utilizing Bayes’ rule change Ep(x)p(θ|x) into Eπ(θ)p(x|θ).

L(ω) = Et,θ1,x,θt
‖fω,x(θt, t) − ut(θt | θ1)‖2 (10)

where t ∼ p(t), θ1 ∼ π(θ), x ∼ p(x | θ1), θt ∼ pt(θ | θ1).

Figure 2. Highlighting the different structure of previous NPE approaches vs. FMPE. The color coding indicates the

efficient transportaion of probability mass when using optimal-transport flow matching. Figure taken from [3].

Performance of FlowMatching on Benchmarking Tasks

Figure 3. Sample paths from the same initial noise with models trained on ImageNet 64×64. The OT path reduces

noise roughly linearly, while diffusion paths visibly remove noise only towards the end of the path. Note also the

differences between the generated images. Figure from [4].

Figure 4. Comparissons of FMPE to popular NPE methods on SBI benchmarking tasks [5]. Figure taken from [3].
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