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Uniformly Scaling Flows

tl;dr: Uniformly scaling flows with p-radial monotonic base distributions "linearize” typicality.

A probabilistic flow model is a diffeomorphism f : R* — R? that transforms a (usually simple)
base distribution B into a (usually more complex) data distribution D, i.e. D = f(B) and
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pp(f) = pp(f~ (2)) |det ——].
£

We say that a flow f is uniformly scaling, if it has constant Jacobian determinant, i.e. there
exists some ¢ € R~ such that |det %H — ¢ forall z € RY,

Uniformly scaling flows are long known. In fact, the arguably first normalizing flow architecture
NICE is uniformly scaling [1]. However, they have some intriguing properties that haven't been
leveraged much to the best of our knowledge.

p=-Radial Base Distributions

We call an absolutely continuous distribution B p-radial, if there is a function ¢ : R+ — R such
that pp(z) = g(|z|p). If g is additionally strictly monotonically decreasing, then we say that B is
p-radial monotonic.

Radial distributions can be defined by starting from the distribution of the p-norm. Let p be

a probability density on Ry. We call R, 4 the p-radial distribution over R? with p-norm dis-
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tribution p, which is given by the pdf pr (z) = p(|z|p) [—5—(z|p)

p.p.d

volume of d-dim. LP ball of radius r

An upper density level set (UDL) w.r.t. B is a set that can be written as {x | pg(x) > t} for some
t € R. We denote UDL of probability ¢ by UDLp(q).

The following observation is crucial for our applications. If B is p-radial monotonic, then by
choosing r(q) = qtmutih‘*mhj(g) we obtain that UDLg(q) = E;f(*r(q'}}, ..e. upper density level sets
are LP-balls.

Linearizing Typicality

If fis auniformly scaling flow on R?, then f preserves density level sets. Hence, it B Is a p-radial
monotonic distribution over R?, then there is a function r : [0, 1) — R such that

Figure 1. Samples from the boundary of UDLs with a given probability.
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Neuro-Symbolic Verification™

tl;dr: Verification on density level sets via SMT and abstract interpretation through u.s. flows.

Formal verification has emerged as a promising method to ensure the safety and reliability of
neural networks [2]. Currently, the two major approaches are satisfiability modulo theory (SMT)
and abstract interpretation (A.l.). Naively verifying a property on the entire input space implies
that the safety of the neural network 1s checked even for inputs that do not occur In the
real-world and have no meaning at all, often resulting in spurious errors.
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Figure 2. Verifying a classier via abstract interpretation on an UDL of a uniformly scaling flow model.

VeriFlow

Let f be a network that is purely build from the layer types (masked) additive coupling, additive
autoregression, masked additive convolution, and LU layers. If the first three layer types only use
piece-wise affine conditioning networks, then f Is a uniformly scaling piece-wise affine flow. In
particular, any density pp defined by f has the following properties:

1. If logppg(-) Is plece-wise affine, then log pp Is piece-wise affine.

2. For any p-radial monotonic base distribution B there is a function r : [0,1) = R4 such that
UDL (p)(q) = f(By(r(q)))

3. Computing log-densities has the same computational complexity as sampling.
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Figure 3. Instances of low classification confidence. Found without (left) and with (right) leveraging a flow model.
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Figure 4, Verification runtime for different network depth and search space size with Marabou (SMT) and Eran (A..).
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Anomaly Detection”

tl;dr: Uniformly scaling flows are also "better” DeepSVDDs. Ongoing research.

DeepSVDD Is a popular anomaly detection method, where we learn to map the data into a
hyper-sphere in a latent space using an arbitrary neural network [3]. Uniformly scaling flows
turn out to be quite directly related to this class of models. Also, they bear certain advantages
over the use of arbitrary networks.

Comparing DeepSVDD and Uniformly Scaling Flows

The objective of a DeepSVDD, ming E y [|g;&;(_;r) - .':fﬂ + A|6|%, has pathological optimal solutions
(e.g. fore = 0, simply & = 0). As ad-hoc counter measure, one removes all bias terms and sets
¢ # 0 In practice.

Uniformly scaling flows can be seen as DeepSVDD variant with a more principled optimization
objective. As one can compute for B =N ((_; {;I) the objective of the flow with a Bayesian prior
on the parameters,

min By |—log pp( | O)pprior(0)] = mn X (5 (@) — cl®] + Yget(6) + prior(6)
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is a variant of the DeepSVDD objective with a different "regularization” term. However, this
variation ensures that a loss of 0 can only be achieved If f‘l(X) = H.

However, exploding determinants Is a related pathology of flow models that can still occur. We
propose to assume a symmetrized log-normal prior on the diagonal entries of LU-layers in our
architecture, which we show to induce a log-normal prior on the determinant of the flow:
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Ablation Study on 10X10 MNIST Digits
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